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Abstract. Tropical forests play an important role in the global carbon cycle, as they store a large amount of biomass. To 

estimate the biomass of a forested landscape, sample plots are often used, assuming that the biomass of these plots represents 

the biomass of the surrounding forest. 10 

In this study, we investigated the conditions under which a limited number of sample plots conform to this assumption. 

Therefore, minimum sample sizes for predicting the mean biomass of tropical forest landscapes were determined by 

combining statistical methods with simulations of sampling strategies. We examined forest biomass maps of Barro Colorado 

Island (50 ha), Panama (50,000 km
2
), and South America, Africa and Southeast Asia (7 million – 15 million km

2
). The 

results showed that 100-200 plots (1-25 ha each) are necessary for continental biomass estimations if the sampled plots are 15 

spatially randomly distributed. 

The locations of the current inventory plots in the tropics and the data obtained from remote sensing often do not meet this 

requirement. Considering the typical aggregation of these plots considerably increase the minimum sample size required. In 

the case of South America, it can increase to 70,000 plots. 

To establish more reliable biomass predictions across South American tropical forests, we recommend more spatially 20 

randomly distributed inventory plots. If samples are generated by remote sensing, distances of more than 5 km between the 

measurements increase the reliability of the overall estimate, as they cover a larger area with minimum effort. The use of a 

combination of remote sensing data and field inventory measurements seems to be a promising strategy for overcoming 

sampling limitations at larger scales. 

1 Introduction 25 

For a better understanding of the global carbon cycle, reliable estimations of carbon stocks in vegetation have become 

increasingly important(Broich et al., 2009; Malhi et al., 2006; Marvin et al., 2014), especially for tropical forests, as they 

store more carbon than any other terrestrial ecosystem (Pan et al., 2011). Current mapping approaches are based on forest 

field inventory plots (Chave et al., 2003; Lewis et al., 2004; Lopez-Gonzalez et al., 2014; Malhi et al., 2002; Mitchard et al., 

2014) or remote sensing measurements (Asner et al., 2013; Baccini et al., 2012; Saatchi et al., 2011) and involve statistical 30 
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approaches (e.g., Malhi et al. (2006)) or vegetation modeling (e.g., Rödig et al. (2017)). Remote sensing-derived maps have 

a typical spatial resolution of 100 - 1000 m and capture the biomass of large landscapes or even entire continents (Asner et 

al., 2013; Baccini et al., 2012; Saatchi et al., 2011). In contrast, biomass maps based on field inventories have a higher 

resolution so that the biomass distribution of local regions can be described in detail. To combine the advantages of the two 

methods, we may transfer insights from field plots to high-resolution large-scale biomass maps. 35 

However, the extrapolation of field inventory plots (typically between 0.25 and 1 ha) to larger areas poses several 

challenges, in the tropics, where field inventory campaigns of species-rich, densely grown forests are costly and labor 

intensive, resulting in a much smaller number of available plots than in temperate and boreal regions (Schimel et al., 2015). 

In South America, for example, some studies created biomass maps of the whole Amazonian forest area (more than 1 billion 

ha) based on a very small percentage of investigated forest area (400 ha) (Lopez-Gonzalez et al., 2014; Mitchard et al., 40 

2014). Moreover, the locations of forest plots are often influenced by accessibility because some regions are excluded for 

topographic, logistic or political reasons (Houghton et al., 2009; Mitchard et al., 2014). Even if plots are representative of the 

landscapes they are located in (Anderson et al., 2009), extrapolations from clustered plot networks to larger scales can be 

biased (Fisher et al., 2008). Consequently, related estimates include large uncertainties; e.g., estimates of the total biomass of 

the Amazon forest vary by more than 100 %, from 38.9 to 93 PgC t/ha (Houghton et al., 2001). 45 

A first step to ensure reliable extrapolations of forest biomass from field plots to large scales is to determine how many plots 

would be necessary to accurately estimate mean biomass on a landscape scale. Previous studies suggested that for regions of 

about 1,000 ha, 10 - 100 sampled one-hectare plots would be necessary (Marvin et al., 2014). However, most investigations 

assume that plots are distributed randomly in space (Chave et al., 2004; Fisher et al., 2008; Keller et al., 2001; Marvin et al., 

2014) and therefore do not consider a possible bias due to the choice of sampling strategy. The selected sampling design can 50 

significantly influence uncertainty and, consequently, the number of sample plots required (Clark and Kellner, 2012). For 

example, in a study of different sampling designs, about 20 stratified sample plots of 0.5 ha were recommended for a region 

in Costa Rica (study site of 600 ha, Clark and Clark, 2000). A deeper understanding of how the choice of sampling design 

affects the number of plots required and the influence of the size of the plots is still missing. 

In this study, we present a novel simulation approach for determining the number of plots necessary across scales and 55 

answering the following questions: (I) How many sample plots are necessary for forest biomass estimations in South 

America and what is the role of the sampling strategy? (II) What is the influence of scale on the sampling design? 

More specifically, we analyze different sampling strategies for biomass in tropical forests at different scales: 50 ha (Barro 

Colorado Island), 50,000 km
2
 (Panama, (Asner et al., 2013)) and 15 million km

2
 (South America, (Baccini et al., 2012)). 

Following the scenario of a "virtual ecologist" (Zurell et al., 2010), we investigate through Monte Carlo simulations and 60 

analytical investigations the plot size and sample size that are necessary for accurate biomass estimations. Furthermore, we 

simulate nonrandom sampling strategies that imitate measurements via remote sensing and real-world forest inventories. 
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2 Methods 

 

Figure 1 Forest aboveground biomass (AGB) maps used for the study. (a) Biomass map of a forest plot on Barro Colorado Island (50 ha, 65 
50 m resolution (Condit et al., 2012)). (b) Biomass map for Panama (~50,000 km2, 100 m resolution (Asner et al., 2013)). (c) Biomass 

map for South America (~15 million km2, 500 m resolution (Baccini et al., 2012)). 

2.1 Biomass maps at different scales 

We focus on three forest biomass datasets for the South American tropical region covering different scales (Fig. 1). For an 

analysis at the local scale, a biomass map of the Barro Colorado Island forest in Panama was applied (BCI, 50 ha) with 70 

resolutions between 10 m and 100 m. The map was based on the forest inventory of 2010 (Condit et al., 2012), which 

included measurements of all trees with a stem diameter greater than 1 cm (Condit, 1998). The aboveground biomass (AGB) 

per plot was determined using allometric relationships (Knapp, Fischer and Huth (2018)).  

Landscape-scale analysis was carried out using a carbon density map of Panama that was derived from Airborne Light 

Detection and Ranging (LiDAR) measurements from 2012, in combination with field measurements and satellite 75 

measurements (Asner et al., 2013). The AGB values for this study were calculated by multiplying the carbon values by a 

factor of two. We aggregated the AGB map from a 100 m resolution to resolutions of 200 m, 300 m, 400 m and 500 m. For 

this purpose, between 4 and 25 plots from the original map were averaged. If these plots covered both forest and nonforest 

areas, we assumed the nonforest areas to have a biomass of zero. If the plots only covered nonforest areas, the aggregated 

plot was still considered as a nonforest area. 80 

At the continental scale, a biomass map with a resolution of 500 m for South America was investigated (~15 Mio km2, 

(Baccini et al., 2012)), which was mainly derived from space-based LiDAR (observations from years between 2008 and 

2010) and covered regions of the American continent between 23.4378° north latitude and 23.4378° south latitude. Based on 
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this map, we constructed a biomass map of South America with a 100 m resolution. For downscaling in this case, we used 

relationships derived from the Panama maps at 100 m and 500 m resolutions (for details, see S3). In addition, we examined 85 

AGB maps for Africa (~12 Mio km
2
) and Asia (~7 Mio km

2
) derived from Baccini et al. (2012) with a 500 m resolution 

(Table S1). All maps were simplified by excluding nonforest plots and plots with biomass values of less than 25 t/ha. 

2.2 Simulated sampling strategies 

We investigated three different sampling strategies: (a) random sampling (b) remote sensing sampling and (c) clustered 

sampling (Fig. 2), with different sample sizes. For example, for analysis of the BCI forest, we divided the 50 ha biomass map 90 

into 200 plots with a size of 50 m x 50 m. Then, we ran simulations with sample sets containing one sample (0.25 ha), two 

samples (0.50 ha), and so forth until we reached a sample size of 100 samples (25 ha, half of the study area). For large-scale 

investigations, we analyzed sample sizes of up to 5,000 plots for Panama and 200,000 plots for South America. 

 

 95 

Figure 2 Examples of different simulated sampling strategies. Aboveground biomass samples based on the map of South America (AGB 

values are indicated by different colors; for the legend, please see Fig. 1). Each black dot represents the location of one selected plot (25 

ha). (a) Randomly distributed plots. (b) Remote sensing samples (strips with distances of 50 km between the plots). (c) Clustered samples 

(reconstructions of PP4). 

2.2.1 Random sampling 100 

Analysis of random sampling was performed using Monte Carlo simulations. For every map, we selected sampling plots at 

randomly selected positions (without replications) until the sample set reached the desired sample size. Associated results 

were additionally determined analytically using the central limit theorem (Supplement S1). 

2.2.2 Remote sensing sampling 

For the remote sensing sampling strategies, we tried to mimic typical features of airborne or satellite measurements, e.g., 105 

assuming that a satellite is flying over a direct north-south track. Starting at a randomly selected position of the map, we 

selected plots with a fixed distance in a north-south direction (while nonforest plots were excluded). In this study, we 

focused on distances between 500 m and 5 km. When the plot selection reaches the southern end of the map, the algorithm 
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starts again at the northern border on a new randomly selected north-south track. The analysis of Panama was conducted by 

selecting plots of 1 ha (map with 100 m resolution). For South America, we selected plots of 25 ha (map with 500 m 110 

resolution). To test whether the results were influenced by the direction of the remote sensing flight tracks, we also tested 

west-east instead of north-south tracks. With this strategy, we tried to explore how the north-south climatic gradient 

influences the results. However, the sampling performance remained similar (i.e., the probability of estimating the mean 

biomass accurately did not change significantly compared to north-east tracks). 

2.2.3 Clustered sampling 115 

The clustered sampling approach mimics the spatial clustering of real-world field inventory networks. To this end, we 

reconstructed the spatial pattern of the plot networks of four studies that estimated forest biomass, including Houghton et al. 

(2001), PP1; Poorter et al. (2015), PP2; Malhi et al. (2006), PP3; and Mitchard et al. (2014), PP4 and analyzed them 

separately regarding the South American map with a resolution of 500 m (25 ha plot size). After removing duplicate 

locations within the 500 m grid, the number of plots per network ranged between 25 and 189. To generate 1,000 plot 120 

networks with similar spatial configurations as the original ones, we applied the method of pattern reconstruction (Wiegand, 

He and Hubbell (2013); software "Pattern-Reconstruction"). This annealing method produces stochastic reconstructions of 

an observed point pattern that shows the same spatial characteristics as the observed pattern, as quantified by several point 

pattern summary functions (for details see S2). 

2.3 Determining the minimum sample size  125 

For each map and each sample size 𝑛, we calculated the sampling probability 𝑃𝑛, which quantifies how often the mean of a 

sample equals the mean of the underlying “true” biomass distribution (under a given accuracy) as the relative frequency out 

of 1,000 sample sets. For each sample set, the mean biomass (Xi,n̅̅ ̅̅̅ in t/ha) was estimated, where i is the sample set number, 

and 𝑛 is the sample size. Xi,n̅̅ ̅̅̅ was then compared with the “true” mean biomass, μ  [t/ha], of the underlying biomass map. A 

sample set was assumed to be acceptable if Xi,n̅̅ ̅̅̅ was within μ ±10 %. The sampling performance can be assessed as follows: 130 

𝑃𝑛 ≅ 
1

1000
∑ 𝑤𝑖

1000

𝑖=1

,  with 𝑤𝑖 =

{
 
 

 
 1, 𝑖𝑓 

|𝑋𝑖,𝑛̅̅ ̅̅ ̅ − 𝜇|

𝜇
≤ 0.1 

0, 𝑖𝑓 
|𝑋𝑖,𝑛̅̅ ̅̅ ̅ − 𝜇|

𝜇
> 0.1 

 

𝑃𝑛 typically increases with the sample size from 0 (no sample could represent the mean biomass) to 1 (all samples could 

represent the biomass). We defined 𝑛𝑚𝑖𝑛 as the minimum sample size 𝑛, at which 𝑃𝑛 reaches 90 %. The minimum sampling 

area, 𝑎𝑚𝑖𝑛, is calculated by multiplying the number of plots, 𝑛𝑚𝑖𝑛, by the plot size. 
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Results 

3.1 Random sampling 135 

3.1.1 Local scale (Barro Colorado Island) 

 

Figure 3 Analysis of different random sampling strategies for the Barro Colorado Island forest (BCI, 50 ha). (a) Analytical results 

showing the number of plots and probability 𝑷𝒏 that the mean biomass of those plots reflects the mean biomass of the forest (for details, 

see Methods). We consider strategies using 0.01-1 ha plots (plot size, represented by line colors). The upper boundary (gray) indicates 140 
sample sizes with accurate biomass estimations (𝑷𝒏 ≥ 𝟗𝟎 %, see Methods for details). (b) Necessary number of plots, 𝒏𝒎𝒊𝒏, to estimate 

the biomass accurately (plot sizes are displayed below the bars). 

The results for a 50 ha biomass map (BCI) showed that samples with larger plot sizes produce more accurate biomass 

estimates (Fig. 3a). A randomly chosen 0.01-ha plot has a probability (𝑃𝑛) of 5 % of representing the mean biomass of the 

whole BCI forest, but if the plot has an area of 1 ha, 𝑃𝑛 reaches 40 %. The size of the plots also affects the minimum number 145 

of plots required (𝑛𝑚𝑖𝑛). For small plots (plot size ≤ 0.04 ha), 𝑛𝑚𝑖𝑛 decreases significantly (Fig. 3b). While only 11 one-

hectare plots are needed to measure the biomass correctly, the number of plots increases to 176 if the plot size is 0.04 ha (20 

m x 20 m). However, the minimum total area of the samples (𝑎𝑚𝑖𝑛) remains similar (Table 1, BCI); i.e., it makes no 

difference in sample performance whether the samples are taken from 29 plots of 0.25 ha each or 746 plots of 0.01 ha each, 

as an area of about 7 ha is sampled in both scenarios. Therefore, the most efficient sampling strategy for the 50 ha scale 150 

would involve 0.25 ha plots, as greater plot sizes would result in a greater total sampling area (𝑎𝑚𝑖𝑛), and smaller plot sizes 

would simply increase the number of plots. 

3.1.2 Large scale (Panama and South America) 

In the last section, random sampling of a small homogeneous forest area was evaluated. In the next step, we analyzed the 

sampling results in large heterogeneous landscapes and whole continents. We analyzed the biomass map of Panama (50,000 155 

km
2
) using plot sizes between 1 ha and 25 ha (Table 1, Panama). In contrast to the BCI analysis, plot size has no significant 
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influence on the minimum sample size in this case, since the results range between 70 and 74 plots. Larger plots lead to a 

slight increase in the number of plots needed. However, the total sampling area (𝑎𝑚𝑖𝑛) increases from 70 ha to 1850 ha for 

different plot sizes. The most efficient sampling strategy at the landscape scale is therefore to sample 70 plots of 1 ha each. 

For the biomass map of South America (15 million km
2
), 102 plots of 25 ha are necessary to estimate the mean biomass with 160 

sufficient accuracy (Table 1, South America; for Africa and Southeast Asia, see Table S1). This corresponds to a total 

sampling area (𝑎𝑚𝑖𝑛) of about 26 km
2
. For plot sizes of 1 ha each, the minimum number of plots decreases slightly to 92 

plots (necessary sample area of 92 ha). 

 

Table 1 Analyzed forest biomass maps and the corresponding minimum sample size. The forest biomass maps for South America 165 
(15,000,000 km2, (Baccini et al., 2012)), Panama (50,000 km2,(Asner et al., 2013)) and Barro Colorado Island (50 ha, (Condit et al., 2012)) 

and their random sampling performance are shown. Different resolutions of the maps led to different results. The minimum sample size 

refers to the necessary number of plots to accurately estimate the observed mean biomass of the forest (the mean of the samples does not 

deviate more than 10 % from the observed mean biomass with a probability of at least 90 %). The last column shows the necessary 

sampling area 𝒂𝒎𝒊𝒏 = 𝑨𝒑𝒍𝒐𝒕 ∙ 𝒏𝒎𝒊𝒏. 170 

Map (Resolution) Plot size 

𝐴𝑝𝑙𝑜𝑡 [ha] 

Coefficient of 

variation CV 

[%] 

Minimum sample size 

𝑛𝑚𝑖𝑛 [plots] 

Minimum total area of 

samples 𝑎𝑚𝑖𝑛 [ha] 

South America (500 m) 25 61.34 102 2550 

South America (100 m) 1 58.16 92 92 

Panama (500 m) 25 52.22 74 1850 

Panama (400 m) 16 51.97 74 1184 

Panama (300 m) 9 51.68 73 657 

Panama (200 m) 4 51.27 72 288 

Panama (100 m) 1 50.77 70 70 

BCI (100 m) 1 19.32 11 11 

BCI (50 m) 0.25 32.57 29 7.25 

BCI (20 m) 0.04 80.55 176 7.04 

BCI (10 m) 0.01 165.95 746 7.46 
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3.2 Remote sensing sampling 

 

Figure 4 Results of remote sensing (RS) sampling for (a-b) Panama and (c-d) South America. Left: Simulation results showing the number 

of plots and probability (𝑷𝒏) that the mean biomass of those plots reflects the mean biomass of the forest (for details, see Methods). We 175 
focus on three RS strategies using distances of 500 m, 1 km and 5 km between plots (shown in blue) and compare them to random 

sampling (red). The area around each line indicates the 95 % confidence intervals of 100 repetitions (total of 1000*100 runs for each 

sample size). The upper boundary (gray) indicates sample sizes with accurate biomass estimations (𝑷𝒏 ≥ 𝟗𝟎 %). Right: Necessary number 

(𝒏𝒎𝒊𝒏) of 1 ha plots for Panama and of 25 ha plots for South America (error bars show the 95 % confidence intervals of 100 repetitions). 

Sampling strategies with a specific spatial structure, such as those generated by aircraft or satellites, are tested by remote 180 

sensing (RS) sampling. The performance of nonrandom strategies was related to the spatial characteristics of maps (S4, Fig. 

S3). When the spatial clustering of the BCI forest biomass map is analyzed at the scale of 50 m, the obtained spatial biomass 

distribution is comparable to a random configuration; thus, the design of the sampling strategy has no influence on the results 

for this local forest area. For Panama and South America, the biomass is distributed in such a way that similar biomass 
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values are more likely to be close to each other, which leads to biased estimation of the mean biomass if the samples are 185 

close to each other (e.g., RS with distances of 0.5 km between the plots). This results in differences between random and 

remote sensing sampling: compared to random sampling, RS samples show a lower probability (𝑃𝑛) of estimating the mean 

biomass of the forest accurately independent of the sample size (Fig. 4). For Panama, random samples based on 100 one ha 

plots exhibit a 𝑃𝑛 = 95 %, while RS samples are less than 60 % reliable (Fig. 4a). For South America, RS samples based on 

100 plots (25 ha plot size) show a 𝑃𝑛 of less than 20 % (Fig. 4b).  190 

The results show that if the distances between the plots increase from 0.5 km to 5 km, about 80 % fewer plots are necessary 

for accurate estimations. Larger distances between the remote sensing measurements make the strategy “more random”, and 

it therefore performs better. In summary, even with large distances between plots, RS sampling leads to higher sampling 

efforts than random sampling. For Panama, an area of 550 ha (instead of 70 ha with random sampling) is necessary to 

estimate the biomass of the 50,000 km
2
 forest with a sufficient precision (Fig. 4c). For South America (15 million km

2
), the 195 

minimum sampling size increases by a factor of 130 compared to random sampling (Fig. 4d), leading to a total sample area 

of about 3275 km
2
. 

3.3 Clustered sampling 

 

Figure 5 Clustered sampling of biomass in South America. We tested different clustered sampling strategies using reconstructed point 200 
patterns based on the locations of existing field plots in South America (PP1-PP4). The simulation was performed with the South America 

map with a resolution of 500 m (25 ha plot size). Results show the probability (𝑷𝒏) of accurate sampling for the spatial clustering of each 

point pattern (gray crosses). The upper boundary (gray) indicates sample sizes with accurate biomass estimations (𝑷𝒏 ≥ 𝟗𝟎 %, see 

Methods for details). As a reference, the results for random sampling are shown (red line). 

Samples based on forest inventory plots are often influenced by accessibility, which leads to nonrandom locations of the 205 

sample plots that are simulated under the clustered sampling approach. Here, we examine the biomass map of South America 

with reconstructed point patterns PP1-PP4 based on the locations of existing inventories in South America (25-189 plots, see 
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Methods). The results show that the probability (𝑃𝑛) of estimating forest biomass accurately is considerably lower compared 

to the probability associated with random samples (Fig. 5). All samples present less than a 35 % chance of reflecting the real 

mean biomass for South America. For clustered sampling, a greater number of samples per se does not lead to better biomass 210 

estimations. The positions of the plots therefore play a crucial role. Although PP4 combines many plots of PP1 and PP3, the 

stochastic sampling scheme based on the spatial aggregation of plots cannot capture the biomass distribution significantly 

better than those based on the single datasets alone. In summary, the simulation results demonstrate that nonrandom 

strategies such as remote sensing sampling and clustered sampling differ significantly from random sampling, leading to 

increased sampling efforts and noticeably greater sampling uncertainties. 215 

4 Discussion 

Due to the large area of tropical forest, only a few parts of the forest can be investigated in detail. Therefore, effective 

sampling strategies for these forests are relevant (Broich et al., 2009; Chave et al., 2004; Malhi et al., 2006; Marvin et al., 

2014). The question of how many forest plots are necessary to predict forest biomass has not yet been fully answered. Thus 

far, sampling quality has often been determined on the basis of the assumption that samples are spatially randomly 220 

distributed (Chave et al., 2004; Fisher et al., 2008; Keller et al., 2001; Marvin et al., 2014). However, sampling at large 

scales in the tropics often does not fulfill this condition because in many cases, random locations are difficult to access 

(Wang et al., 2012). In this study, we compared different sampling strategies for tropical forests across various scales and 

plot sizes examining the probability to obtain the correct biomass estimate and the associated minimum sample size. 

Therefore, we simulated random samples and compared them to samples that are specified by remote sensing flight routes or 225 

spatially clustered. 

4.1 Random sampling 

We showed that 11-92 randomly distributed plots (1 ha each, depending on the forest extent) are necessary to estimate the 

mean biomass for tropical forests in the South American region. This result is in line with a study by Marvin et al. (2014) in 

which the minimum sample sizes for biomass maps of regions in Peru (1 -10 km
2
) were investigated. The results 230 

demonstrated that the main factor influencing the minimum sample size is the variability in biomass values in the map, so 

homogeneous Amazonian landscapes require fewer plots than heterogeneous regions in the Andes (Marvin et al., 2014). 

By testing plot sizes between 0.01 ha and 1 ha, we demonstrated that sample plots should not be smaller than 0.25 ha 

because sampling effort increases with smaller plot sizes. To estimate the minimum sample size of a particular forest region, 

it might be useful to assess variability, for example, by using forest models (Zurell et al., 2010), forest type maps (Marvin et 235 

al., 2014) or topography (Réjou-Méchain et al., 2014). 

For large areas (tropical forests in South America, Africa, Southeast Asia), we obtained minimum sample sizes of about 100-

200 plots (randomly distributed, 25 ha each) on each continent. We also tested larger plot sizes with a biomass map from 
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Saatchi et al. (2011), but the results were similar (100-230 plots, 100 ha each). Furthermore, our tests included smaller plot 

sizes obtained by downscaling the South American biomass map using relationships derived from the Panama forest biomass 240 

map (50,000 km
2
 forest area). The results indicated that 100 plots of 1 ha that are randomly distributed in space are sufficient 

for biomass estimations in South America at large scales (Table 1). Please note that we tested a simple downscaling 

procedure, so caution must be applied to these initial findings. 

Although the coefficient of variation (CV) of the biomass distribution decreases with increasing plot size for local forests 

(Réjou-Méchain et al., 2014; Wagner et al., 2010), there seem to be only small effects for larger landscapes. For Panama, we 245 

even found a slight increase in CV when the plot size was changed from 1 ha to 25 ha, since the mean biomass value for the 

region was reduced due to averaging forest with non-forest plots. 

4.2 Nonrandom sampling 

Our analysis showed that sampling efforts change significantly if samples are not random in space. For South America, 

nonrandom samples of forests are less reliable and require significantly more plots to achieve accurate biomass estimations. 250 

This means that the necessary plots for nonrandom sampling strategies (as can be found in real-world inventories and RS 

measurements) cannot be assessed by Monte Carlo simulations that implicitly assume that samples are random (as in related 

studies of (Chave et al., 2004; Fisher et al., 2008; Keller et al., 2001; Marvin et al., 2014). Instead simulation procedures 

need to incorporate more advanced methods that include aggregated plot placement.  

We demonstrated that a spatial autocorrelation has an effect on the sampling strategy if plots close to each other are more 255 

similar than plots located farther apart (positive autocorrelation). Larger regions were shown to be more spatially clustered in 

terms of biomass (e.g., large biomass stocks occur more frequently within the Amazon basin than in the surrounding 

landscape) because biomass varies due to environmental gradients and geographical reasons (Houghton et al., 2009). 

Therefore, large-scale analyses are more affected by the sampling design than regional estimations. 

The methods presented above can also be applied to other forest attributes (e.g., species richness and carbon fluxes) and can 260 

be adapted to other ecosystems, such as grasslands or farmlands. Please note that in this study, we did not consider additional 

error sources, e.g., due to tree size measurements or allometric models, even though they are also known to influence 

estimates (Chave et al., 2004). 

5 Conclusions 

In summary, our study shows that the accuracy of the biomass estimates derived from samples depends considerably on the 265 

sampling strategy. Inventories are highly relevant for studying forest structure and dynamics. For South America, we have 

shown that more spatially randomly distributed plots are beneficial for continental-wide biomass estimations. Plot size 

should not fall below 0.25 ha, as the variability of biomass values will strongly increase (Chave et al., 2003; Clark et al., 

2001; Keller et al., 2001; Réjou-Méchain et al., 2014), and tree-level measurement errors can dominate (Chave et al., 2004). 
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Since remote sensing can sample forest regions in a short time (Houghton et al., 2009; Schimel et al., 2015), a combination 270 

of remote sensing data and field inventory data seems to be a promising approach to overcome current limitations. 

Code and Data availability 
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